Growth Factor Stimulation Improves the Structure and Properties of Scaffold-Free Engineered Auricular Cartilage Constructs

نویسندگان

  • Renata G. Rosa
  • Paulo P. Joazeiro
  • Juares Bianco
  • Manuela Kunz
  • Joanna F. Weber
  • Stephen D. Waldman
چکیده

The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm). While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods for Producing Scaffold-Free Engineered Cartilage Sheets from Auricular and Articular Chondrocyte Cell Sources and Attachment to Porous Tantalum

Scaffold-free cartilage engineering techniques may provide a simple alternative to traditional methods employing scaffolds. We previously reported auricular chondrocyte-derived constructs for use in an engineered trachea model; however, the construct generation methods were not reported in detail. In this study, methods for cartilage construct generation from auricular and articular cell source...

متن کامل

Designing of Human Cartilage Tissue, by Differentiation of Adipose-Derived Stem Cells With BMP-6 in Alginate Scaffold

Purpose: In the present study the effect of BMP-6 was investigated on chondrogenesis of adiposederived stem cells. Materials and Methods: Mesenchymal stem cells derived from subcutaneous adipose tissue were cultured on alginate scaffold to induce chondrogenesis in experimental group, with chondrogenic medium having BMP-6 growth factor for 3 weeks. In control group medium without BMP-6 was appli...

متن کامل

Bioengineering Human Scaffold-free Cartilage Constructs Using Paediatric Auricular Tissue

Currently, patients with external ear deformities rely on hyaline cartilage grafts or silicone prosthesis to provide them with adequate external ear reconstruction. Scaffold-free auricular tissue engineering provides a means of creating patient specific cartilage constructs solely using their own cells, ensuring biocompatibility, long term stability, and reduced morbidity. Here, we have develop...

متن کامل

Surface zone articular chondrocytes modulate the bulk and surface mechanical properties of the tissue-engineered cartilage.

The central hypothesis of functional tissue engineering is that an engineered construct can serve as a viable replacement tissue in vivo by replicating the structure and function of native tissue. In the case of articular cartilage, this requires the reproduction of the bulk mechanical and surface lubrication properties of native hyaline cartilage. Cartilage tissue engineering has primarily foc...

متن کامل

Scaffold-free cartilage tissue engineering with a small population of human nasoseptal chondrocytes.

OBJECTIVE Cartilage tissue engineering is a promising approach to provide suitable materials for nasal reconstruction; however, it typically requires large numbers of cells. We have previously shown that a small number of chondrocytes cultivated within a continuous flow bioreactor can elicit substantial tissue growth, but translation to human chondrocytes is not trivial. Here, we aimed to demon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014